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Today’s Reading

* A gentle overview of Information
Theory as a branch of Applied
Mathematics

 |Introduces basic information
measures:

* Entropy
* Relative Entropy

e Mutual Information

1v.36. [nformation Theory

13 Tracking

s menn‘oned in the previous section, adaptive filters
énd peamformers can be se'en as devices for estimating
qnknown parameters. In this case, however, the param-
oters are constants. If the unknown parameters are time
varying, the problem is one of tracking.

gince the estimation of N parameters requires at
least N pieces of data, it is not possible to estimate
more than one arbitrary time-varying parameter from
a single time series. It is therefore conventional to
assume that the parameters evolve in a known man-
ner: for example, 6(n) = F(6(n — 1) | ¢), where ¢ are
(known) parameters of the function F. Given this model
for the time evolution of the parameter, it is then pos-
sible to formulate a parameter-estimation algorithm.
As with adaptive filtering and beamforming, one can
take a deterministic (i.e., least-squares) approach or a
Bayesian approach. In the former case one ends up with
the well-known Kalman filter, which is optimum for lin-
ear systems and Gaussian noise. In the latter case one
ends up with a more powerful algorithm but with the
computational issues mentioned above.
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IV.36 Information Theory
Sergio Verdu

1 A Mathematical Theory of Communication”

Rar.ely does a scientific discipline owe its existence to
a single paper. Authored in 1948 by Claude Shannon
(_1916-2001), “A mathematical theory of communica-
tion” is the Magna Carta of the information age and
information theory’s big bang. Using the tools of prob-
ability theory, it formulates the central optimization
problems in data compression and transmission, and
finds the best achievable performance in terms of the
statistical description of the information sources and
communication channels by way of information mea-
sures such as entropy and mutual information. After
a glimpse at the state of the art as it was in 1948, we
elaborate on the scope of Shannon’s masterpiece in the
rest of this section.

1.1 Communication Theory before the Big Bang

Motivated by the improvement in telegraphy trans-
mission rate that could be achieved by replacing the
Morse code by an optimum code, both Nyquist (1924)
and Hartley (1928) recognized the need for a measure
of information devoid of “psychological factors” and
put forward the logarithm of the number of choices
as a plausible alternative. Kiipfmiiller (1924), Nyquist
(1928), and Kotel'nikov (1933) studied the maximum
telegraph signaling speed sustainable by band-limited
linear systems at a time when Fourier analysis of sig-
nals was already a standard tool in communication
engineering. Inspired by the telegraphllsmdlgs, Ha‘rt-
ley put forward the notion that the cgpacnty of a
system to carry information” is proportional to the
time-bandwidth product, a notion further. elaborated
by Gabor (1946). However, those authors fa.lled to grap-
ple with the random nature of both noise and.the
information-carrying signals. At tbe same time, the idea
of using mathematics to design linear filters for com-
batting additive noise optimally had been put to use

, Kolmogorov (1941) and Wiener (1942) for mml'mum
:el:r(l)—square error estimation and by North (1943) for
the detection 0
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h(p) = plog; +(1 —p)log(l 5

which is the entropy of the biased coin source. The
ubiquitous linear-time Lempel-Ziv uniyersal data-
compression algorithms are able to achieve, a.symp-
totically, the entropy rate of ergodic statlogary
sources. Therefore, at least in the long run, univer-
sality incurs no penalty.

Relative entropy: a measure of the dissimilarity be-
tween two distributions P and Q defined on the same
measurable space (A, F), defined as

DPIQ) =flog(§—g-)d1’-

Relative entropy plays a central role not only in infor-
mation theory but also in the analysis of the ability to
discriminate between data models, and in particular
in large-deviation results, which explore the exponen-
tial decrease (in the number of observations) of the
probability of very unlikely events. Specifically, if n
independent data samples are generated with prob-
ability distribution Q, the probability that they will
appear to be generated from a distribution in some
class P behaves as

exp (-n jnf D(P[Q)).

Relative entropy was introduced by Kullback and
Leibler in 1951 with the primary goal of extending
Shannon’s measure of information to nondiscrete
cases.

Mutual information: a measure of the dependence
between two (not necessarily discrete) random vari-
ables X and Y given by the relative entropy between
the joint measure and the product of the marginal
measures:

I(X;Y) = D(Pxy||Px x Py).

Note that I(X; X) = H(X) if X is discrete,

For stationary channels that behaye ergodically, the
channel capacity is given by :

C = lim lm I(X
i ax ( l,...,Xn;Yl,...,Yn)

where the maximum is over all joint distributions

of (X1,...,Xn), and (Yi,...,Y,) are the Ko

Tesponses to (Xy,..., X,). If the ch i
veees Xn). annel is stati /
memoryless, then the formula boilg down toanonm

€ =maxI(x;y).
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as long as the location of the erageq symbo]s
known to the decoder and the noneraseq sz ;s
are received error free. In the case of a binary Cham(: sl
that introduces errors independently with pmbabiel
ity 8, the capacity is given by :

C=1-h(d),

while in the case of a continuous-time additive Gauss.
jan noise channel with bandwidth B, transmissjon
power P, and noise strength N, the capacity js

P .
C = Blog (1 + m) bits per second,

a formula that dispels the pre-1948 notion that the
information-carrying capacity of a communicatiop
channel is proportional to its bandwidth and that is
reminiscent of the fact that in a cellular phone the
stronger the received signal the faster the download.
In lossy data compression of a stationary ergodic
source (X, X2,...), the rate compatible with a given
per-sample distortion level d under a distortion mea-
sure d: A2 — [0, o] is given by

N T
R(d) = ,l,llll zmlnI(Xl,...,Xn;Yl,...,Yn).

where the minimum is taken over the joint distribu-
tion of source X" and reproduction Y", with given
Pxn, and such that

1 n
= > d(X;,Y;) < d.
n:

i=1
For stationary memoryless sources, just as for capac
ity we obtain a “single-letter” expression R(d) =
min/(X;Y).

It should be emphasized that the central conce™
of information theory is not the definition of infor*
mation measures but the theorems that use them [
describe the fundamental limits of compressio? any
transmission. However, it is rewarding that entTOPV'
Mmutual information, and relative informatior, as “e.
as other related measures, have found aPP]ications.u;
many fields beyond communication theory, 1€ “dlg.
Probability theory, statistical inference, ergodic t,he(c)es:
computer science, physics, economics, life scie
and linguistics,
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Entropy

Joint and Conditional Entropy
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Entropy

Chain Rule
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Entropy

Properties
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Relative Entropy (KL-Divergence)

Definition

%eﬂimkoc\: Thae ?o\&f}'\vq Qn»\~re?3 \DQ,}wq_,Qr\ 4w rPcobqb;\b
Aiskeibadions . GnQ Qx s de§ined a3

P (<)
D( P ([ Q) = E@YE ks S

B ks T

—

—

z
KeX

rpw()er};e,s'. D P |l Q/(\ > O
4
Eciuxq&l)% 1Y V¥(ﬂ :Qx(”> /ccr XE& 3(



MUTUAL INFORMATION



Mutual Information

Definition
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Mutual Information
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Mutual Information

Conditional Mutual Information
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Mutual Information
Data Processing Inequality (DPI)
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